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Abstract

Nonlinear natural in-plane vibrations of a rectangular plate are studied using three small parameters.
Firstly, the nonlinearity is assumed to be small. Then, a solution to a problem of the zeroth order (linear) is
sought in the form of an asymptotic series with respect to the ratio of stiffness characteristics.

For internal resonance, vibration modes are coupled via an infinite system of nonlinear algebraic
equations, and the artificial small parameter approach is proposed to solve the obtained system. Analytical
formulas for the amplitude–frequency characteristics are derived and the solutions are compared with
numerical results.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Determination of dynamic characteristics of a raft foundation, i.e. amplitudes and frequencies
of vibrations, belongs to challenging tasks in the civil engineering. When known, the dynamic
characteristics enable a significant decrease in both foundation vibrations and their interaction
with the other two construction members, which in turn may eventually lead to a reduced need for
the working personnel. Note that computations are more complicated when they include
nonlinear characteristics of a foundation. In general, analytical approaches make it possible to
see front matter r 2004 Elsevier Ltd. All rights reserved.
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take into account only the first few vibration modes. On the other hand, owing to nonlinearities
various internal resonances between modes may occur. Moreover, in certain cases neglect of
higher modes may yield essential errors [1]. In order to omit these drawbacks, the present work
proposes a new asymptotic approach to solving nonlinear vibration problems in continuous
systems, in which all modes are subject to approximation. Free vibrations of a plate within a
nonlinear and elastic external medium and in conditions of in-plane deformations are studied, to
finally obtain approximate relations of amplitude–frequency characteristics.

Natural in-plane vibrations of a rectangular plate 0pxpl1; 0pypl2 with clamped edges
surrounded by a nonlinear elastic medium are considered. The governing equations have the
following form:

B
q2u

qx2
þ B1

q2u

qy2
þ B2

q2u
qxqy

�
q2u

qt2
� b1u � �b2u3 ¼ 0; (1)

B
q2u
qy2

þ B1
q2u
qx2

þ B2
q2u

qxqy
�
q2u
qt2

� b1u� �b2u
3 ¼ 0; (2)

where uðuÞ are displacements in the directions Ox (Oy), respectively; B ¼ E= r 1� v2
� �� �

; E is
Young’s modulus, v is Poisson’s coefficient, r is a plate material density, B1 ¼ G=r; G is a shear
modulus, B2 ¼ ððEv=ð1� v2ÞÞ þ GÞ=r; and � is a small parameter (� � 1).

The following boundary conditions are attached:

u ¼ u ¼ 0 for x ¼ 0; l1; y ¼ 0; l2: (3)

The defined situation can occur when a plate is located between elastic rough surfaces, like in a
so-called sheet piling (Fig. 1) where the plate edges are clamped stiffly. Since generally an external
load is distributed periodically, a periodic solution is sought.

A periodic solution searched for should satisfy the following periodical conditions:

u x; y; tð Þ ¼ u x; y; t þ Tð Þ; u x; y; tð Þ ¼ u x; y; t þ Tð Þ: (4)

Nonlinear terms in the in-plane deformation equations are neglected, but the nonlinear medium
deformation is taken into account. The described model can be applied when the stiffness
characteristics of the plate and the surrounding medium differ essentially. An influence of
dissipative factors is omitted in our considerations.
2. Asymptotic procedure

In order to solve boundary value problem (1)–(4), an asymptotic approach is applied. Out of
three small parameters used in the study, the first one applied is parameter � assumed to be equal
to 0 in the zeroth-order approximation. In the linear case, eigenfrequencies corresponding to
fundamental modes, which are to be found, are realized as half-waves in both x and y directions.
Let us transform the time via the formula

t ¼ ot: (5)
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Fig. 1. Governing model: sheet piling.
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The solution is sought in the form of the asymptotic series:

u ¼ u0 þ �u1 þ �2u2 þ . . . ; (6)

u ¼ u0 þ �u1 þ �2u2 þ . . . ; (7)

o ¼ o0 þ �o1 þ �2o2 þ . . . : (8)

Substituting Eqs. (5)–(8) into Eqs. (1), (2) and conditions (3)–(5), and then equating the terms
with the same � powers, the following recurrent system of equations is obtained:

B
q2u0

qx2
þ B1

q2u0

qy2
þ B2

q2u0
qxqy

� o2
0

q2u0

qt2
� b1u0 ¼ 0; (9)

B
q2u0
qy2

þ B1
q2u0
qx2

þ B2
q2u0

qxqy
� o2

0

q2u0
qt2

� b1u0 ¼ 0; (10)

B
q2u1

qx2
þ B1

q2u1

qy2
þ B2

q2u1
qxqy

� o2
0

q2u1

qt2
� b1u1 ¼ 2o0o1

q2u0

qt2
þ b2u3

0; (11)

B
q2u1
qy2

þ B1
q2u1
qx2

þ B2
q2u1

qxqy
� o2

2

q2u1
qt2

� b1u1 ¼ 2o0o1
q2u0
qt2

þ b2u
3
0: (12)
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Boundary conditions (3) and periodicity conditions (4) and (5) take the form

uijx¼0;l1 ¼ uijy¼0;l2 ¼ 0; uijy¼0;l1 ¼ uijx¼0;l2 ¼ 0; (13)

ui x; y; tð Þ ¼ ui x; y; tþ 2pð Þ; (14)

ui x; y; tð Þ ¼ ui x; y; tþ 2pð Þ; i ¼ 0; 1; 2 . . . : (15)

3. Zeroth order approximation

To find an approximation of the zeroth order with respect to small parameter �; the boundary
value problem (9), (10), (13)–(15) should be solved. It is worth noting that for this problem
variables cannot be separated. The Galerkin approach may be used, but, on the other hand, the
problem, which is governed by PDEs of the fourth order with respect to special variables, would
become essentially simpler if it could be described by PDEs of the second order instead. In what
follows, the second asymptotic procedure is applied in order to reduce the input PDEs of the
fourth order to two PDEs of the second order. The parameter d ¼ B=B2o1 serves as a small
parameter.

In the aircraft and rocket designing [2,3], as well as in the theory of composites [4–7], the
following intuitively clear simplification of the plane problem of elasticity is widely used: if a load
acts in the direction of Ox (Oy), then one may take u ¼ 0 ðu ¼ 0Þ: The asymptotic character of the
described simplifications is well clarified in Refs. [8–11]; Refs. [10–13] describe construction of
singular asymptotics, and a rigorous mathematical treatment is addressed in Refs. [14,15].
Unfortunately, nowhere does this engineering approach refer to the questions related to the
solution accuracy improvement, formulation of boundary conditions, etc.

Investigations that have been carried out show that as far as practical purposes are concerned
the introduced simplifications exhibit a sufficient accuracy. As an example, consider a static model
of concentrated force acting on an elastic half-plane. In this case both exact and approximate
solutions have a similar structure. Namely, in order to obtain the approximate solution, intensity
coefficient 2 in the exact solution should be substituted by 1.69. Since in practice all coefficients
are generally burdened with their estimation errors, the introduced approximation seems to be an
appropriate one.

Our problem will be dealt with using the approach described in Refs. [11,16,17]. First, the
following transformation of the coordinates is introduced:

x ¼
ffiffiffiffi
B

p
x1; y ¼

ffiffiffiffiffiffi
B1

p
y1; (16)

x ¼
ffiffiffiffiffiffi
B1

p
x2; y ¼

ffiffiffiffi
B

p
y2: (17)

On substituting Eq. (16) into Eqs. (9), (13), and Eq. (17) into Eqs. (10), (13), boundary value
problem (9), (10), (13)–(15) takes the form

q2u0

qx2
1

þ
q2u0

qy2
1

þ d
q2u0

qx1qy1

� o2
0

q2u0

qt2
� b1u0 ¼ 0; (18)
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q2u0
qy2

2

þ
q2u0
qx2

2

þ d
q2u0

qx2qy2

� o2
0

q2u0
qt2

� b1u0 ¼ 0; (19)

q2u1

qx2
1

þ
q2u1

qy2
1

þ d
q2u1

qx1qy1

� o2
0

q2u1

qt2
� b1u1 ¼ 2o0o1

q2u0

qt2
þ b2u3

0; (20)

q2u1
qy2

2

þ
q2u1
qx2

2

þ d
q2u1

qx2qy2

� o2
0

q2u1
qt2

� b1u1 ¼ 2o0o1
q2u0
qt2

þ b2u
3
0; (21)

uijx1¼0;l1=
ffiffiffi
B

p ¼ uijy1¼0;l2=
ffiffiffi
G

p ¼ uijx2¼0;l1=
ffiffiffiffi
B1

p ¼ uijy2¼0;l2=
ffiffiffi
B

p ¼ 0; (22)

uijy1¼0;l2=
ffiffiffiffi
B1

p ¼ uijx1¼0;l1=
ffiffiffi
B

p ¼ uijy2¼0;l2=
ffiffiffi
B

p ¼ uijx2¼0;l1=
ffiffiffiffi
B1

p ¼ 0; (23)

ui x1; y1;; t
� �

¼ ui x1; y1;; tþ 2p
� �

; (24)

ui x2; y2; t
� �

¼ ui x2; y2; tþ 2p
� �

: (25)

Since usually do1; d may be treated as a small parameter. A solution to boundary value
problem (18)–(25) is sought in the form of the asymptotic series:

ui ¼ ui;0 þ dui;1 þ d2ui;2 þ . . . ; ui ¼ ui;0 þ dui;1 þ d2ui;2 þ . . . :

Taking into account only the approximations of the zeroth order with respect to d; one arrives
at input variables:

B
q2u0;0

qx2
þ B1

q2u0;0

qy2
� o2

0

q2u0;0

qt2
� b1u0;0 ¼ 0; (26)

B
q2u0;0
qy2

þ B1
q2u0;0
qx2

� o2
0

q2u0;0
qt2

� b1u0;0 ¼ 0; (27)

B
q2u1;0

qx2
þ B1

q2u1;0

qy2
� o2

0

q2u1;0

qt2
� b1u1;0 ¼ 2o0o1

q2u0;0

qt2
þ b2u3

0;0; (28)

B
q2u1;0
qy2

þ B1
q2u1;0
qx2

� o2
2

q2u1;0
qt2

� b1u1;0 ¼ 2o0o1
q2u0;0
qt2

þ b2u
3
0;0; (29)

ui;0

��
x¼0;l1

¼ 0; ui;0

��
y¼0;l2

¼ 0; (30)

ui;0

��
x¼0;l1

¼ 0; ui;0

��
x¼0;l2

¼ 0: (31)

Further problems for functions ui,0 and ui,0 will be analyzed separately.
For Eqs. (26) and (30) the solution reads

u0;0 ¼
X1
m¼1

X1
n¼1

A1ðm;nÞ sin
olin

1ðm;nÞ

o1;0
t1

 !
sin

pm
ffiffiffiffi
B

p

l1
x1

	 

sin

pn
ffiffiffiffiffiffi
B1

p

l2
y1

	 

(32)
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and for Eqs. (27) and (31) one has

u0;0 ¼
X1
m¼1

X1
n¼1

A2ðm;nÞ sin
olin

2ðm;nÞ

o2;0
t2

 !
sin

pm
ffiffiffiffiffiffi
B1

p

l1
x2

	 

sin

pn
ffiffiffiffi
B

p

l2
y2

	 

; (33)

where

olin
1ðm;nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2m2B

l21
þ

p2n2G

l22
þ b1

s
; olin

2ðm;nÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2m2G

l21
þ
p2n2B

l22
þ b1

s
; m; n ¼ 1; 2; 3 . . . ;

are vibration frequencies of the linear system, oa;0 ¼ olin
að1;1Þ; a ¼ 1; 2:
4. Artificial small-parameter method

The next approximation with respect to � is found by solving boundary value problem (28) and
(29). As usual, in order to avoid secular terms, in the right-hand sides of Eqs. (28) and (29) the
coefficients standing by the terms

sin
olin

1ðm;nÞ

o1;0
t1

 !
sin

pm
ffiffiffiffi
B

p

l1
x1

	 

sin

pn
ffiffiffiffiffiffi
B1

p

l2
y1

	 


and

sin
olin

2ðm;nÞ

o2;0
t2

 !
sin

pm
ffiffiffiffiffiffi
B1

p

l1
x2

	 

sin

pn
ffiffiffiffi
B

p

l2
y2

	 

; m; n ¼ 1; 2; 3 . . . ;

should be equal to zero. These conditions yield two infinite systems of nonlinear algebraic
equations of the form

2Aaðm;nÞoa;1

b2oa;0
olin

aðm;nÞ

� 
2

¼
X1
i¼1

X1
j¼1

X1
k¼1

X1
l¼1

X1
p¼1

X1
s¼1

C
ðijklpsÞ
aðm;nÞ Aaði;jÞAaðk;lÞAaðp;sÞ; (34)

where coefficients C
ðijklpsÞ
aðm;nÞ are found by substituting expressions (33) and (34) into the right-hand

sides of Eqs. (28) and (29), and performing the corresponding simplifications. To this aim,
‘Mathematica’ package is applied.

Furthermore, a solution to the analyzed problem is sought in the form

u ¼
X1
m¼1

X1
n¼1

A1ðm;nÞ sin O1ðm;nÞt
� �

sin
pm

l1
x

	 

sin

pn

l2
y

	 

þ Oð�Þ þ OðdÞ; (35)

u ¼
X1
m¼1

X1
n¼1

A2ðm;nÞ sin O2ðm;nÞt
� �

sin
pm

l1
x

	 

sin

pn

l2
y

	 

þ Oð�Þ þ OðdÞ; (36)

where Oaðm;nÞ ¼ ðolin
aðm;nÞ=o

lin
að1;1ÞÞoa:

The first series term with respect to � represents an influence of nonlinearity. The solution of Eq.
(34) yields quantities oa;1 and eigenfrequencies Oaðm;nÞ: Although the system can be solved using
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reduction, an increase in the number of equations causes computational difficulties, and in
addition, higher modes are not taken into account. To avoid these problems, the method of
artificial small parameter is applied [18–20]. Let us discuss this third asymptotic procedure.

Birkhoff [21] has wondered ‘‘How well is Nature simulated by the varied asymptotics models
that imaginative scientists have invented?’’ Any new asymptotic model is linked with a certain
small parameter, which sometimes is far from being trivial. For instance, a parameter that has
found a wide application in the quantum mechanics is 1=N; where N stands for the number of
spatial dimensions [22]. Note that not always does a real (physically realized) small parameter
assure a proper solution to a problem. This is because for small parameter values, the analytical
dependence of a solution that is looked for on the given parameter possesses singularities. In this
situation it is an artificial parameter that is recommended. There exist a large number of ways in
which an artificial small parameter can be introduced (see Refs. [18–20,22–29]). For example, �
may be assumed to stand by the terms to be neglected (assuming � to be small), and consequently �
can be taken to be equal to 1.

In the case under consideration, in the right-hand side of each (m, n)th equation of system (34)
an artificial small parameter m is introduced, which stands by each term AaðI ;jÞAaðk;lÞAaðp;sÞ for
which the following inequality chain holds: ði4mÞ [ ðk4mÞ [ ðp4mÞ [ ðj4nÞ [ ðl4nÞ [ ðs4nÞ:
Therefore, for m ¼ 0; system (34) has a triangular structure and is reduced to a recurrent set of
equations, whereas for m ¼ 1; it is transformed to the input form.

In the next step, a solution is sought in the form

oa;1 ¼ oð0Þ
a;1 þ moð1Þ

a;1 þ m2oð2Þ
a;1 þ . . . ; (37)

Aaðm;nÞ ¼ A
ð0Þ
aðm;nÞ þ mA

ð1Þ
aðm;nÞ þ m2A

ð2Þ
aðm;nÞ þ . . . ; m; n ¼ 1; 2; 3 . . . ; ðm; nÞað1; 1Þ (38)

and then m ¼ 1 is taken. The proposed approach makes it possible to consider an arbitrary
number of equations. In our further computations, only the first two terms in series (37) and (38)
are taken into account.

Note that the accuracy of the proposed approach can be significantly increased with the
application of the Padé approximations [30].
5. Analysis of a general case b1 2 ð0;1Þ

In the considered problem, b1 plays the role of a bifurcation parameter. In the general case,
when b1a0; b1 / Oð1Þ and b2 / Oð1Þ systems (34) have the following solutions:

Aaði;jÞ ¼ 0; i; j ¼ 1; 2; 3 . . . ; ði; jÞaðm; nÞ;

oa;1 ¼
27

128

A2
aðm;nÞb2oa;0

olin
aðm;nÞ

� 
2
; m; n ¼ 1; 2; 3 . . . :

Observe that in the zeroth order approximation with respect to � there occurs only one
mode in displacements u, and similarly one mode in displacements u: The corresponding
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frequencies read

Oaðm;nÞ ¼ olin
aðm;nÞ þ 0:2109375

A2
aðm;nÞb2

olin
aðm;nÞ

�þ OðdÞ þ Oð�dÞ þ O �2
� �

; a ¼ 1; 2:

Internal resonance occurs for b1 ¼ 0: In the case under discussion the internal resonance
appears between two vibration modes. Solving systems (34) with the help of the artificial
parameter method, one arrives at

Aaðm;nÞ ¼ 0; m; n ¼ 1; 2; 3 . . . ; ðm; nÞað1; 1Þ; ðm; nÞað2i � 1; 2i � 1Þ; i ¼ 1; 2; 3 . . . ; (39)

Aað3;3Þ ¼ �4:5662
 10�3Aað1;1Þ; Aað5;5Þ ¼ 2:1139
 10�5Aað1;1Þ; . . . ;

oa;1 ¼ 0:211048
A2

að1;1Þb2

oa;0
:

In the zeroth order approximation with respect to � all odd ‘diagonal’ modes (1,1), (3,3), (5,5)
are realized simultaneously. Furthermore, if originally the vibrations are self-excited having one
of the higher-order modes, then also low-order modes are excited up to the fundamental one (1,1).
In other words, a high-frequency excitation with small amplitude of the plate can cause large
vibration amplitude.

The eigenfrequencies are estimated via the formula

Oaðm;nÞ ¼ moa;0 1þ 0:211048
A2

að1;1Þb2

o2
a;0

�

 !
þ OðdÞ þ Oð�dÞ þ O �2

� �
; (40)

where m ¼ n ¼ 1; 3; 5 . . . ; a ¼ 1; 2:
Fig. 2 shows dependences of eigenfrequencies Oað1;1Þ of fundamental modes on amplitudes

Aað1;1Þ for different values of parameter �: During computations the following relations hold:
Fig. 2. Amplitude frequency dependences for some values of parameters ðOn ¼ Oað1;1Þ=oa;0; AnAað1;1Þl
�1
1 l�1

2 l�2
1 þ l�2

2

� �1=2
Þ:
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Table 1

Comparison of numerical and asymptotic results

Asymptotical solutions (32) Numerical results

oa;1 ¼ 0:211048A2
að1;1Þb2=oa;0 oa;1 ¼ 0:211044A2

að1;1Þb2=oa;0

Aaðm;nÞ ¼ 0; m; n ¼ 1; 2; 3; . . . ; ðm; nÞað1; 1Þ;
ðm; nÞað2i � 1; 2i � 1Þ; i ¼ 1; 2; 3; . . .

Aaðm;nÞ ¼ 0; m; n ¼ 1; 2; 3; . . . ; ðm; nÞað1; 1Þ;
ðm; nÞað2i � 1; 2i � 1Þ; i ¼ 1; 2; 3; . . .

Aað3;3Þ ¼ �4:5662
 10�3Aað1;1Þ Aað3;3Þ ¼ �4:5639
 10�3Aað1;1Þ

Aað5;5Þ ¼ 2:1139
 10�5Aað1;1Þ Aað5;5Þ ¼ 2:1117
 10�5Aað1;1Þ
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Q= Bl22 þ B1l21
� �

¼ 105 for the equation concerning u and Q= B1l22 þ Bl21
� �

¼ 105 for the equation
concerning v, where Q ¼ b2l41l42= p2 l21 þ l22

� �� �
:

Observe that the applied method of artificial small parameter guarantees good accuracy of the
obtained results. In Table 1, relations (40) are compared with those obtained via numerical
solution of nonlinear systems (34). Again the computations are carried out using the
‘Mathematica’ package with only the first few equations including the mode (5,5) taken into
account.
6. Concluding remarks

Natural nonlinear in-plane plate vibrations are analyzed. The Relations between amplitudes of
vibration modes are obtained and asymptotic formulas for eigenfrequencies are displayed. Among
others, it is shown that when parameter b1 is equal to zero, all odd diagonal modes in the zeroth
order approximation are excited. Moreover, even a weak excitation of high frequency may yield
low-frequency vibrations with large amplitude.

The proposed approach can be used to solve approximately many other problems of nonlinear
vibrations in various systems with distributed parameters.
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